
WHITEPAPER

This whitepaper explores how zero installation has evolved
to be what it is today, describes the components in a typical
solution, outlines specific technologies that can be used to
deploy it, and discusses considerations for including it in
your next embedded product.

The Embedded Developer’s
Guide to Zero Installation

The Qt Company The Embedded Developer’s Guide to Zero Installation 2

Contents
Introduction and Terminology . 3
Zero Installation in the Real World . 4
Why Modern Zero Installation Is Different . .5
User Benefits . 5
Manufacturer Benefits . 6

When to Avoid Zero Installation . 7
Non-native UI . 7
No user interaction . 7
No TCP/IP . 7
No storage . .7
Poor connectivity . . 7
Restricted device access . 7

Today’s Zero Installation Technology Portfolio . 8
HTML5 . . 8
WebGL . 8
WebAssembly . 8
The WebSocket API (WebSockets) . 8

Zero Installation Solutions Using Qt . 8
WebGL . 9
WebAssembly . 9
Comparison of WebGL and WebAssembly . 11
WebGL . 11
WebAssembly . 11
How it works . 11
Converting existing Qt apps . 11
Application speed . . 11
UI responsiveness . 11
Initial startup time . 11
Number simultaneous clients . 11
Difficulty of reverse engineering . 11
Limitations . 11

Qt Zero Installation Technology Stack . 12
Zero Installation and the Cloud . . 12
Functional Safety and Cybersecurity . 13
Conclusion . 13

The Qt Company The Embedded Developer’s Guide to Zero Installation 3

Zero installation
allows the user
of an embedded
device to control
the device through
a smartphone, tablet,
or desktop using a
web page rather
than having to
install an app.

Introduction and Terminology

Zero installation allows the user of an embedded
device to run applications without having to download
or install them because the applications are browser-
based. By eliminating the typical installation process,
the user benefits from a streamlined out-of-the-
box experience. And since browser technology is
fundamentally standardized, a single application can
run on any client device – Windows, Mac, or Linux
desktops, Android or Apple phones, or any number
of tablets.

Zero installation is not a specific software-packaging and distribution tool
such as 0Install – despite the similarity in name – but rather a generic term for
browser-based applications. While there are several definitions in use, for the
purpose of this paper we consider zero installation to be a method of controlling
an embedded device through a browser-based companion program hosted by
the device. (Later in the paper, we also discuss an alternative zero-installation
configuration where a cloud-hosted application can drive an embedded device.)
Regardless of definition, there are a number of components to any zero installa-
tion solution:

Embedded device – There is always a piece of hardware in a zero installation
solution, whether it is a smart home control center, an industrial robot, or an
X-ray machine. The embedded device must communicate to the user about how
to control the device and allow the user to view its status.

Connection – The embedded device has to provide some form of TCP/IP connec-
tivity through WiFi, Ethernet, or cellular data. For IoT devices this may be through
a full Internet connection although that’s not the only method. A dedicated or
direct network connection that doesn’t pass through the Internet is another
alternative, which may be more desirable in high security or functional safety
applications.

User device (or client) – A client device is required in order to view the remote
user interface such as a desktop computer, laptop, smartphone, or tablet. This
client needs to be able to run a modern browser with enough free memory to load
the remote application.

Remote UI (or remote application, or companion app) – A piece of software must
run within the user’s browser to control the embedded device. This is often the
device’s main user interface, although it may possess a physical display and
buttons as well.

https://0install.net/

The Qt Company The Embedded Developer’s Guide to Zero Installation 4

Browser – There needs to be a web browser running on the client device to
provide the virtual environment in which the application runs.

Web server – Software is needed on the embedded device to deliver the
application to the browser.

Zero Installation in the Real World
Zero installation technology provides many advantages for the user as well as
the manufacturer. For this reason, it has been successfully applied in a large
number of diverse areas:

Industrial automation – Several companies are using zero installation solutions
in their process control or automation control software. Bosch is a good example
as they use it in their assembly line calibration equipment.

Automotive – Zero installation capabilities within vehicle modules allow dealers
and mechanics to easily diagnose problems.

Healthcare – Many leading companies use zero installation solutions for medical
image viewing, patient record management, and diagnostic sharing.

Smart Home – Smart home hubs allow technicians to connect and configure
a home system with a more advanced UI than what is available through the
user app.

Nearly any product that has an advanced embedded system with the need for
users (or operators) and technicians to monitor, control, or diagnose it is a can-
didate for zero installation. This includes advanced manufacturing, aerospace,
agriculture, construction, consumer electronics, medical, resource extraction,
robotics, transportation – the list is nearly endless.

Zero installation
core components.

web server
Embedded device

Web server CONNECTION Remote UI

Browser

User device

https://www.qt.io/bosch-built-with-qt
https://www.itnonline.com/chart/remote-viewing-systems

The Qt Company The Embedded Developer’s Guide to Zero Installation 5

Why Modern Zero Installation Is
Different
You may be old enough to remember when a new printer included an installation
disk with configuration software or drivers. Although the extra installation step
was always an inconvenience, it was especially annoying in an IT setting where
one piece of hardware was shared among many. To help alleviate the major pain
of maintaining software for every employee in an organization’s network, the
earliest zero installation solutions involved adding web servers and web applica-
tions to shared devices such as printers and network storage devices. Due to the
cost of extra storage, web page configuration features were often limited to more
expensive devices. Today’s zero installation solutions are different for a number of
reasons.

Users – It’s not just IT specialists who need to talk to their devices; depending on
the device, it may be diagnostic technicians, specially trained operators, or even
consumers.

Products – While zero installation was once limited to the high-end of a product
catalog, connectivity has become pervasive for nearly every embedded device.
Now, IoT devices with Internet connectivity and the horsepower to run a web
server are equally good candidates.

Look and feel – Previous generations of embedded devices used primitive looking
and clunky UIs. Web technology standards now provide a number of options with
far superior performance and attractiveness.

End result – Rather than focusing on simple configuration or monitoring tasks,
today’s zero installation solutions are providing fully functional browser-driven
apps that compete with desktop applications in sophistication and capability.

User Benefits
Today’s zero installation solutions are great for the consumer as they provide a
way to have “instant” access to the features of a product. The friction traditionally
encountered by a user in the first few moments of using a new product is not a
trivial concern; it can lead to a poor user experience, minimize the usefulness of a
purchase, and even reflect poorly on a brand. The expectation for things to “just
work” is part of human nature – a positive UX is a must have regardless of wheth-
er the product is built for consumers or technicians.

Previous zero installation solutions were valued primarily because they provided
a way to monitor devices from a remote desktop. However, people now want to
control their devices at home or on the road as well as from their desks. By allow-
ing consumers to use their own mobile devices to control a product, zero instal-
lation gives them the freedom to roam as well as potential accessibility from just
about anywhere – be it a dedicated factory computer or an Internet café.

Allowing customers to use their own devices for the UI also negates the need
for additional equipment. Rather than requiring specialized tools to diagnose,

The Qt Company The Embedded Developer’s Guide to Zero Installation 6

configure, or repair a product, a zero installation solution helps users gain access
to product features without new single-purpose tools.

Manufacturer Benefits
Device manufacturers have a host of reasons to build zero installation into their
products. Zero installation apps are inherently cross-platform, meaning a single
solution can be developed to support all of a product’s potential users – instead
of creating separate Windows, Mac, iOS, Android, and Linux builds. By skipping
time-consuming installations while supporting the customer’s platform of choice,
product manufacturers are able to deliver a better, more streamlined experience
that helps them differentiate their product. And there are no installation “gotchas”
like shared library incompatibilities or inadequate user permissions.

Zero installation gives
user the freedom to
roam as well as potential
accessibility from just
about anywhere.

The Qt Company The Embedded Developer’s Guide to Zero Installation 7

When to Avoid Zero Installation
If zero installation reduces UX friction and makes more capable products easier to
build – why wouldn’t you build it into your next system? There are a few factors to
consider.

Non-native UI
Because a single application is served up to all clients, clearly the user interface
will also be identical across all devices. While that consistency may be a benefit in
many cases, it does mean that the UI will not have a native look and feel. Perhaps
more importantly, the UI will also not be able to integrate any native device tech-
nologies outside the browser environment. If platform-conforming UIs or plat-
form-specific sensors are essential to your product’s definition, a zero-installation
solution may not work for you; you may need to develop several platform-inde-
pendent versions of the companion app.

No user interaction
Some classes of devices have no need to talk to a user directly, such as sensors or
edge devices. These smaller devices are often part of a larger installation and are
connected to a gateway device or a cloud application. Notably, they don’t need to
be individually accessible and hence don’t need a UI at all. This is also true when
these devices rely on standard protocols like MQTT or SNMP. The user will expect
these devices to connect to existing dashboard applications that speak those pro-
tocols, so there is no additional benefit in hosting a separate zero-installation app.

No TCP/IP
A big reason to avoid zero installation is if your embedded device doesn’t support
WiFi, Ethernet, or cellular data. This can apply to low-power devices that use BTLE
as well as devices that communicate over Zigbee or Z-Wave mesh networks.

No storage
Smaller devices or low cost devices that rely on on-board microcontroller flash
memory may not have enough storage to host a web server or a web application.
(Although the device itself may not have enough space, hosting the app on a cloud
server may be an alternative should you really want to go the zero installation
route.)

Poor connectivity
Some environments either do not have reliable connectivity or have connectivity
restrictions. Whether this is due to a lack of infrastructure, security concerns,
or inadequate range, you’ll need to understand your device and the networking
environment it will eventually live in to understand whether this may preclude a
zero installation product.

Restricted device access
Depending on your deployment architecture, a zero installation UI may not have
direct access to your embedded system’s hardware. That means abstraction
layers are needed to connect the UI and the hardware, adding development time,
complexity, and latency to the solution. (Note that the Qt WebGL implementation
doesn’t have this limitation, which we discuss later.)

Zero installation
reduces UX friction
and makes more
capable products
easier to build.

The Qt Company The Embedded Developer’s Guide to Zero Installation 8

Today’s Zero Installation Technology
Portfolio
The often cryptic and clumsy interfaces served up by previous generations of
embedded devices were limited to earlier versions of HTTP and HTML. The
basic UIs of yesteryear are often no longer acceptable, especially as pervasive,
beautiful, and straightforward user interfaces have driven up user expectations.
Thankfully, a host of newer technology options can be used to implement a zero
installation application now.

HTML5
The HTML5 markup language, especially when combined with its partners
JavaScript and CSS3, has advanced significantly in capability since the early days
of the web. HTML5 now is capable of fully interactive apps like Google Docs,
Airtable, or Pixlr.

WebGL
For inherently graphical or 3D displays, there is WebGL, a browser-based 2D/3D
graphics API based on OpenGL ES that allows browsers to display graphical
content. Examples of Web GL applications are Google Maps, the Thingiverse 3D
printing platform, and the BioDigital Human Platform.

WebAssembly
Web Assembly enables developers to cross-compile languages that cannot
normally run within a browser (like C or C++) into a form that’s compatible with
a WebAssembly-capable browser. Currently, every major browser supports it:
Google Chrome, Mozilla Firefox, Opera, Microsoft Edge, and Apple Safari. Although
WebAssembly operates in a virtualized (and protected) environment, it aims for
near native execution speed. We’ve got a number of examples you can look at.

The WebSocket API (WebSockets)
Many browser applications communicate with their embedded device through
HTTP, although this is done by getting HTTP and an embedded application server
to perform tricks they weren’t really designed to do. WebSockets is a newer tech-
nology (although it’s been around since 2012), which allows client-side browser
apps to directly communicate with embedded server applications for better per-
formance, lower-latency, higher security, and cleaner implementations.

Zero Installation Solutions Using Qt
Readers of this paper no doubt already know some of the advantages of the Qt
framework: it has a huge ecosystem of developers, libraries, and tools, it excels in
building cross-platform applications, and it delivers the native performance of C++
to name just a few. Qt may be a very capable C++ framework, but can you also
make browser-based zero installation applications with it?

Yes, indeed. There are two primary ways to convert your C++ Qt application into
a browser-based version: WebGL and WebAssembly. Let’s dig a little further into
these two technologies to see what’s required.

https://docs.google.com/
https://airtable.com
https://pixlr.com/x/
https://get.webgl.org/
https://maps.google.com/
https://www.thingiverse.com/
https://www.biodigital.com/
https://webassembly.org/
https://www.qt.io/qt-examples-for-webassembly
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.qt.io/

The Qt Company The Embedded Developer’s Guide to Zero Installation 9

WebGL
The Qt WebGL solution translates Qt rendering commands into a WebGL stream
that is sent to a remote browser to construct a display on an embedded device.
Implementing this from a developer’s perspective is trivial – in fact, in most cases,
the only thing needed to make it work is adding another launch argument (-plat-
form webgl).

There’s quite a bit going on under the covers to support this simple command as
you can see in the diagram. To start, the embedded device fires up a lightweight
web server for the zero installation application, as well as a WebSocket server to
send and receive commands. When a browser connects to the web server, the
server sends over a small JavaScript front-end application that creates WebSocket
connections back to the embedded device’s WebSocket server to send and receive
commands.

Meanwhile, the embedded device launches the Qt application but with a QPA
plug-in to intercept any OpenGL ES draw commands produced by the UI. Any
draw commands are converted into a serialized WebGL stream and sent off to the
JavaScript app via the WebSocket connection. The JavaScript app grabs the draw
commands and uses WebGL APIs to draw the embedded device’s UI within the
browser. This same WebSocket channel is also used by the JavaScript app to cap-
ture the user’s mouse and keyboard commands, which are sent back to the server
to complete the user interface loop.

In this solution, the server side does the bulk of the work, which is different from
a typical WebGL application that draws the display through client-side JavaScript
programming. This makes some aspects simpler but introduces a few limitations
– as detailed in our comparison on the following pages.

Qt WebGL block
diagram

web server

Embedded device

QPA: WebGL

QT APPLICATION

Browser

WebServer

WebSocket
server

User input

OpenGL
commands

Device

Desktop / tablet / smartphone

JavaScript

WebGL

https://www.youtube.com/watch?v=Hkscd0lPoGU

The Qt Company The Embedded Developer’s Guide to Zero Installation 10

WebAssembly
If you choose to go the Qt WebAssembly route, a standard Qt application is
recompiled with the Emscripten compiler to create a WebAssembly binary. This is
delivered to the client and run in a container within the browser. Since the client’s
browser provides the horsepower to run the app, it’s much easier to support
many simultaneous clients with this approach.

The block diagram of the WebAssembly solution is structurally similar to that
of WebGL. WebAssembly also requires a lightweight web server to serve up the
application binary as well as a server to handle connections to the client.

Unlike the Qt WebGL solution, the programmer must specifically manage interac-
tion between the application and the embedded device. One way to solve this is to
use a micro-service architecture that provides fine-grained modular services that
handle each specific task that the client app needs to execute. The client’s brows-
er application packages up any requests and sends them to the embedded device.
The device’s server receives the request packets, unwraps them, and executes
them. (MQTT or JSON are two lightweight formats with corresponding Qt classes
that make them both easy to use.) Another alternative is QtRemoteObjects, which
allows the Qt slot/signal mechanism to operate between machines.

Qt WebAssembly
block diagram Embedded device

Browser

CoAP server

HTTP server

Web Socket server

WebServer

QT for WebAssembly
(.wasm file)

JSON
XML

MQTT
QT Remote

Objects

Device

Desktop / tablet / smartphone

WebAssembly

WebGL

QT BACKEND
APPLICATION

https://resources.qt.io/gameofthrones-qt/overview-qt-for-webassembly-on-demand-webinar-2

The Qt Company The Embedded Developer’s Guide to Zero Installation 11

Comparison of WebGL and WebAssembly

WebGL WebAssembly

How it works Device sends serialized
WebGL data stream to client
browser to draw remote UI

Device delivers WebAssembly
binary to client browser; app in
turn runs within browser

Converting ex-
isting Qt apps

Trivial. Client-side application
graphics are handled auto-
matically and direct device
control is unaffected

Simple. Conversion is mostly
handled with a recompile using
the WebAssembly toolchain.
Components that directly
access hardware need to be
converted to use microservice
architecture (or equivalent)

Application
speed

Dictated by embedded
hardware

Dictated by client device
hardware

UI responsive-
ness

UI runs on embedded hard-
ware and is transferred to
client device so responsive-
ness is dependent on suf-
ficient network bandwidth
and low packet latency

UI runs directly on client
device so responsiveness is
dependent on client hardware
specifications and other client
applications running in back-
ground

Initial startup
time

Quick – nearly instant.
Client browser only needs
to receive small stub before
displaying first frame

Longer – may take a few sec-
onds. Full WebAssembly appli-
cation must be transferred to
client device and compiled by
browser on first launch

Number simul-
taneous clients

One. Multi-process Qt Web-
GL is on the roadmap

Unlimited

Difficulty of
reverse engi-
neering

Client-side reverse engineer-
ing is impossible as client
device only receives WebGL
data stream

WebAssembly code that is
transferred to client device
can be reverse engineered,
although it’s much harder than
with the HTML5/ JavaScript
equivalent

Limitations Not applicable if app uses
non-OpenGL drawing (e.g. Qt
Widgets)

Not applicable if app includes
third party modules without
source, since all code must
be re-compiled into WebAs-
sembly

The Qt Company The Embedded Developer’s Guide to Zero Installation 12

Qt Zero Installation Technology Stack
So what do you need to build a zero installation solution with Qt?

First, you’ll need Adobe Photoshop or Adobe Sketch for your designers to create
graphical assets. You’ll also need Qt Design Studio, which is used to create
declarative QML from the imported graphical assets for your application’s various
screens.

Then, you’ll need Qt Creator to provide the necessary compiler, tools, and libraries
to build Qt applications. This integrated development environment (IDE) can be
used to build Qt applications from your designer’s graphical assets using either
QML or C++. (Note: Qt for WebAssembly requires that you select the option to
download Qt sources so they can be recompiled for WebAssembly.)

You’ll also need Qt for Application Development, which provides a rich set of
components and tools for building UIs (QML, Widgets, OpenGL, SVG, Qt 3D), man-
aging hardware communication (networking, WebSockets, Bluetooth, serial ports,
CAN, Modbus, sensors), and taking care of data management (SQL, XML, image
formats).

Next up is Qt for Device Creation. This package supplies the necessary compo-
nents for building, debugging, and deploying on embedded devices. It includes
cross-compilation toolchains, software for debugging over USB, the Boot to Qt
software stack, Qt for RTOS, and a number of reference target platforms. It also
includes both the Qt WebGL and Qt for Web Assembly components, enabling
developers to create either type of solution.

Finally, one of the core parts for any Qt zero installation solution is Qt for Au-
tomation. That’s because Qt for Automation includes a number of key pieces to
communicate between embedded devices and client apps such as Qt MQTT, Qt
OPC UA, Qt KNX, Qt CoAP, and Qt Remote Objects.

Zero Installation and the Cloud
Another option to hosting a zero installation application on an embedded device is
to have it hosted in the cloud. Qt gives you the flexibility to include this approach
in your strategy, as all of the tools remain the same. A cloud-based app is a good
approach if your embedded hardware doesn’t have the horsepower to host or run
complex, data-hungry apps or if the app needs access to data resources main-
tained in the cloud.

The downside to a cloud-hosted option is the connection. When the embedded
device hosts the client app, a connection between the client browser and the
device is guaranteed. A cloud-based architecture necessitates that the client
machine is connected to the Internet with no interference from proxies, VPNs, or
firewalls, and requires a separate connection from the client browser to the em-
bedded device. These requirements aren’t unsolvable but can slightly complicate
the “no friction” promise.

https://www.adobe.com/ca/products/photoshop.html
https://www.adobe.com/ca/products/sketch.html
https://www.qt.io/ui-framework#designstudio
https://www.qt.io/qt-features-libraries-apis-tools-and-ide/
https://www.qt.io/qt-for-application-development/
https://www.qt.io/qt-for-device-creation/
https://www.qt.io/qt-in-automation/

The Qt Company The Embedded Developer’s Guide to Zero Installation 13

One big upside to zero installation in the cloud is that you can merge input from
many devices across a network into a single model, critical in the development
of digital twins. A digital twin takes sensor inputs from a system or object that
exists in the real world to create a real-time virtual replica of it. This allows the
object to be remotely examined for proactive maintenance, operational efficiency,
and educational information. Digital twin technology is starting to see traction in
manufacturing, healthcare, automotive, building automation, space, and defense.

Functional Safety and Cybersecurity
How does zero installation fare when there are cybersecurity concerns? Many IT
organizations use company firewalls and user permissions that would need to
be loosened to install application software. Since zero installation apps run in a
browser, they allow users to access the product’s companion apps while main-
taining strict IT controls. The browser provides a virtualized, contained environ-
ment, keeping the client computer isolated from attempts to hack in at the client
end. The connection between the hardware and client can include secure sockets
for encryption and authentication of the data passed between the two machines.

Zero installation also helps prevent reverse engineering. In a WebGL implementa-
tion, reverse engineering from the client-side is impossible, since no application
data is sent – only WebGL rendering commands. A WebAssembly application
does send an executable to the client. However, the resulting binary code is far
less comprehensible than the equivalent human-readable HTML5/JavaScript app
would be.

Qt can be used to create industrial (IEC 61508), automotive (ISO 26262), and
medical (IEC 62304) certified systems using Qt Safe Renderer. However Qt zero
installation using WebAssembly doesn’t need any type of rendering on the em-
bedded system at all. It’s a headless solution, making it more straightforward to
certify. (Unfortunately, the same simplicity cannot be said for the WebGL variant,
which would not be easy to certify.)

Conclusion
Zero installation gives users many advantages with a no hassle start, lower
maintenance, and cross-platform and mobility capabilities. Product developers
often choose Qt to create these solutions as Qt gives them the ability to create a
superior user experience while shortening and simplifying the development pro-
cess with cross-platform flexibility, reliable and performant tools, and a broadly
supported developer ecosystem.

Another piece of good news is you can reuse your existing native Qt application in
a browser-based zero installation app with either Qt for WebGL or Qt for Web-
Assembly. Besides ease of implementation and a single code base, a Qt-based
zero installation application may have additional advantages, such as improved
security and performance.

If you think zero installation might be the right solution for you, contact us for help
understanding how to implement it into your future products.

Zero installation
gives users many
advantages with
a no hassle start,
lower maintenance,
and cross-platform
and mobility
capabilities.

https://en.wikipedia.org/wiki/Digital_twin
https://azure.microsoft.com/en-us/services/digital-twins/
mailto:https://www.qt.io/contact-us/product-question

